indroduce local coordinates x; on M3

$$\rightarrow$$
 one-forms are locally y, ndx;
coordinates along
cotangent directions
 $\rightarrow M_3 = \{(x, 0) \in T^*M_3\}$
 $\rightarrow de formation is described by
 $M'_3 = \{(x, \lambda(x))\} \subset T^*M_3$
 $ane-form$
 M'_3 must be also special Lagrangian
to minimize energy!
In the local coordinates (x, y) $\in T^*M_3$,
the symplectic form w has the form:
 $w = dy, \Lambda dx, + dy_2 \wedge dx_2 + dy_3 \wedge dx_3$
 $= d(y; dx_i)$
 $\Rightarrow w|_{M'_3} = d(\lambda)$ on deformed locus
 $\Rightarrow d(\lambda) \neq 0$ hence λ is closed$

-> get a gange th. in 3d But! Yang-Mills term irrelevant in IR! -s can have Chern-Simons term Suppose we have U(1) CS-th. in 3d at level k, corresponding action: $S = \frac{k}{4\pi} \int d^3x d^4\theta V \Sigma, \Sigma = \widetilde{D}^* D_* V$ $= \frac{k}{4\pi} \left(A \wedge dA - \bar{\lambda} + 2D\sigma \right)$ _ have Wilson line observables along cycles C in S'xD²: $\mathcal{O}_{W} = \exp(iq \beta A)$ -> correlation functions are: $\left\langle \exp\left(iq, \oint_{C_{1}} A\right) \exp\left(iq_{2} \oint_{C_{2}} A\right) \right\rangle \sim \exp\left(\frac{2\pi iq_{1}q_{2}}{R}\left[C_{1}, C_{2}\right]\right)$ where [C1, C2] denotes the integer valued linking number between curves Ci

-> correlation function vanishes
iff.
$$q = 0 \mod R$$

 $\rightarrow q$ is valued in \mathbb{Z}_{K} !
Back to our 3-manifold M_{2} :
gauge charges are captured by $H_{1}(M_{3},\mathbb{Z})$
 $\implies CS-level = K \iff H_{1}(M_{2},\mathbb{Z}) = \mathbb{Z}_{K}$
 $\int \mathbb{B} = \int_{0}^{\infty} b \wedge A = \int_{0}^{\infty} b \wedge A = q(\int b) A$
 $\downarrow_{\alpha_{q}} \qquad q_{\alpha} \qquad q_{\alpha}$
 $\downarrow_{\alpha_{q}} \qquad q \in \mathbb{Z}_{K}$
generalization:
If gauge theory has $n \quad U(r)$ gauge
fields with level matrix K_{1j} :
 $S = \int d^{3}x \quad \sum_{i,j=1}^{\infty} \int d^{4}\theta \quad \frac{K_{1j}}{4\pi} \vee_{i} \sum_{i}$
 $= \frac{1}{4\pi} \int d^{3}x \quad K^{ij} A_{i} \wedge dA_{j} + \cdots$
then $H_{1}(M_{3}, \mathbb{Z})$ is generated by n
elements T_{i} modulo relations defined

by the image of
$$K_{ij}$$
:
 $H_{i}(M_{3}, \mathbb{Z}) = \bigoplus \mathbb{Z}[\overline{\Gamma}_{i}]/(K_{ij}\cdot\overline{\Gamma}_{j}=0)$
Some facts about 3-manifolds:
The 3-manifold M_{3} can be realized
ca the boundary of a 4-manifold
 $M_{3} = \partial M_{4}$
To see this, note that in our setup
 $S(S' \times \mathbb{D}^{2}) = \mathbb{T}^{2}$
 \rightarrow topologically $S' \times \mathbb{D}^{2} \sim \mathbb{T}^{2} \times \mathbb{R}_{+}$
Thus we can equivalently write
 $\underbrace{S' \times \mathbb{D}^{2} \times M_{3}}_{Wrapped} = \mathbb{T}^{2} \times M_{4}$
wrapped by M_{5}
where locally $M_{4} \sim M_{3} \times \mathbb{R}_{+}$
globally M_{4} is a non-trivial 4-maniful
such that generators b_{i} of $\mathbb{T} = H_{2}(M_{4}, \mathbb{Z})$
have intersection form $\langle b_{i}, b_{j} \rangle = K_{ij}$.

Example (Kens space):
The Kens space
$$L(p,q)$$
 is defined as
 $M_3 = L(p,q) = \left(S^3 = \{(2_1,2_2) \in \mathbb{C}^2 | |2_1|^2 + |2_1|^2 = l_1^2\} / \mathbb{Z}_p\right)$
where
 $\mathbb{Z}_p: (2_1,2_2) \sim (e^{2\pi i/p_{2_1,p}} e^{2\pi i q/p_{2_2}})$
We assume p and q to be coprime
integers
The matrix K_{ij} is given by the
following construction:
 \rightarrow compute the continued fraction
expansion for $-\frac{p}{q}$:
 $-\frac{p}{q} = a_1 - \frac{1}{a_2 - \frac{1}{a_2 - \frac{1}{a_1 - \frac{1}{a_2 - \frac{1}{a_1 - \frac{$

$$K = \begin{pmatrix} \alpha_{1} & 1 & 0 & \cdots & 0 \\ 1 & \alpha_{2} & 1 & \cdots & 0 \\ 0 & 1 & \ddots & \ddots & \ddots \\ \vdots & \vdots & & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & 0 & 1 & \alpha_{n} \end{pmatrix}$$

Interpretation:
K can be thought of as the linking
form on the following link chain

$$OSS$$
....O
 $C_1 C_2$
embedded in S³
 \rightarrow perform surgery by removing
tubular neighborhood $N(C_i) \equiv S' \cdot D^2$
of each link component and gluing
it back after non-trivial diffeomorphism:
 $\phi: T^2 \rightarrow T^2$
 $\partial N(C_i)$