§3. Reduction of M_{5}-braves along M_{3}
Recall:
Gd (2,0) th. of type A_{r} on $M_{3} \times\left\{s^{\prime} \times D^{2}\right.$ or $\left.L\left(k_{1}\right)_{b}\right\}$

In this paragraph we will follow reduction a) along M_{3} via top. twist to a $3 d N=2$ theory and analyze the resulting MTC at low energies
§3.1 Single fivebrane and Abelian MTC's
Consider M-theory on the spacetime

$$
S^{\prime} \times D^{2} \times T^{*} M_{3} \times \mathbb{R}^{2}
$$

Consider M5-brane $\subset T^{*} M_{3}$ as a special Lagrangian: $\left.\underset{\sim}{\sim}\right|_{M_{3}=0}, \operatorname{Im}\left(\Omega \Omega_{M_{3}}\right)=0$ symplectic
forme
nor. 3 -form
\rightarrow fluctuations of M_{5} inside $T^{*} M_{3}$
indroduce local coordinates x_{i} on M_{3}
\rightarrow one-forms are locally $y_{i} \wedge d x_{i}$ coordinates along cotangent directions

$$
\rightarrow \quad M_{3}=\left\{(x, 0) \in T^{*} M_{3}\right\}
$$

\rightarrow deformation is described by

$$
M_{3}^{\prime}=\left\{\left(x, \lambda_{\uparrow}(x)\right)\right\} c T^{*} M_{3}
$$

one-form
M_{3}^{\prime} must be also special Lagrangian to minimize energy!
In the local coordinates $(x, y) \in T^{*} M_{3}$, the symplectic form w has the form:

$$
\begin{aligned}
w & =d y_{1} \wedge d x_{1}+d y_{2} \wedge d x_{2}+d y_{3} \wedge d x_{3} \\
& =d\left(y_{i} d x_{i}\right)
\end{aligned}
$$

$\left.\rightarrow \omega\right|_{M_{3}^{\prime}}=d(\lambda)$ on deformed locus
$\Rightarrow d(\lambda) \stackrel{!}{=} 0$ hence λ is closed

Similarly, one can show for the imaginary part of the holomorphic
3-form: $\operatorname{Im}\left(\left.\Omega\right|_{M_{3}^{\prime}}\right)=d(x \lambda) \stackrel{!}{=} 0$
$\Rightarrow \lambda$ must be harmonic form on M_{3}
$\rightarrow \quad T_{M_{3}} \mu\binom{$ special agr. }{ def. of $M_{3}} \cong H^{\prime}\left(M_{3} ; \mathbb{R}\right)$
moduli space
\rightarrow deformations will appear as (realsalar) fields in effective the org $T\left[M_{3}\right]$
$N=2$ susy \rightarrow real scalars have to be paired with other fields
Know M5-brane has 2 -form B
\rightarrow reduction along 1 -cycles of M_{3} gives $3 d$ gauge field Am
\rightarrow together with scalars and fermions get $N=2$ "vector multiple": $^{\text {get }}$: A

$$
V=\left(A_{\mu}, \lambda, \sigma, D\right)
$$

\rightarrow get a gauge th. in $3 d$
But: Yaug-Mills term irrelevant in IR!
\rightarrow can have Chern-Simons term
Suppose we have $U(1)$ CS-th. in Sd at level k, corresponding action:

$$
\begin{aligned}
S & =\frac{k}{4 \pi} \int d^{3} x d^{4} \Theta V \Sigma, \quad \Sigma=D^{\alpha} D_{\alpha} V \\
& =\frac{k}{4 \pi} \int(A \wedge d A-\bar{\lambda} \lambda+2 D \sigma)
\end{aligned}
$$

\rightarrow have Wilson line observables along cycles C in $S^{\prime} \times D^{2}$:

$$
O_{w}=\exp _{\text {charge }}\left(i \oint_{c} A\right)
$$

\rightarrow correlation charge functions are:

$$
\left\langle\exp \left(i q_{1} \oint_{C_{1}} A\right) \exp \left(i q_{2} \oint_{C_{2}} A\right)\right\rangle \exp \left(\frac{2 \pi i q_{1} q_{2}}{k}\left[C_{1}, C_{2}\right]\right)
$$

where $\left[C_{1}, C_{2}\right]$ denotes the integer valued linking number between curves C_{i}
\rightarrow correlation function vanishes
iff $\quad q=0 \bmod k$
$\rightarrow q$ is valued in \mathbb{Z}_{k} !
Back to our 3 -manifold M_{3} : gauge charges are captured by $H_{1}\left(M_{3}, \mathbb{R}\right)$

$$
\begin{aligned}
& \Rightarrow C \text {-level }=k \leftrightarrow H_{1}\left(M_{3}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{k} \\
& \square \int_{\alpha_{q}} B=\int_{\alpha_{q}} b \wedge A=\int_{q \alpha} b \wedge A=q \underbrace{\left(\int_{\alpha} b\right)}_{=1} A
\end{aligned}
$$

where $\quad q \in \mathbb{Z}_{k}$
generalization:
If gauge theory has $n U(1)$ gauge fields with level matrix $K_{i j}$:

$$
\begin{aligned}
S & =\int d^{3} \times \sum_{i, j=1}^{n} \int d^{4} \theta \frac{K_{i j}}{4 \pi} V_{i} \Sigma_{j} \\
& =\frac{1}{4 \pi} \int d^{3} x \quad k^{i j} A_{i} \wedge d A_{j}+\cdots
\end{aligned}
$$

then $H_{1}\left(M_{3}, \mathbb{Z}\right)$ is generated by n elements Γ_{i} modulo relations defined
by the image of $K_{i j}$:

$$
H_{1}\left(M_{3}, \mathbb{Z}\right) \cong \bigoplus_{i=1}^{n} \mathbb{Z}\left[\Gamma_{i}\right] /\left(k_{i} ; T_{j}=0\right)
$$

Some facts about 3 -manifolds:
The 3 -manifold M_{3} can be realized as the boundary of a 4-manifold

$$
M_{3}=\partial M_{4}
$$

To see this, note that in our setup

$$
\partial\left(S^{\prime} \times D^{2}\right)=T^{2}
$$

\rightarrow topologically $\quad S_{\times} D^{2} \sim T^{2} \times \mathbb{R}_{+}$
Thus we can equivalently write

$$
\underbrace{S_{\times}^{\prime} D^{2} \times M_{3}}_{\text {wrapped by } M 5}=T^{2} \times M_{4}
$$

where locally $M_{4} \sim M_{3} \times \mathbb{R}_{+}$
globally M_{4} is a non-trivial 4-manifold such that generators b_{i} of $T=H_{2}\left(M_{4} ; \mathbb{Z}\right)$ have intersection form $\left\langle b_{i}, b_{j}\right\rangle=K_{i j}$.

Example (Lens space):
The L Les space $L(p, q)$ is defined as

$$
M_{3}=L(p, q)=\left(S^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}\left|z_{2}\right|^{2} \mid\right\}\right) / \mathbb{Z}_{p}
$$

where

$$
\mathbb{Z}_{p}:\left(z_{1}, z_{2}\right) \sim\left(e^{2 \pi i / p_{z_{1}}}, e^{2 \pi i q / p_{z_{2}}}\right)
$$

We assume p and q to be coprime integers
The matrix $K_{i j}$ is given by the following construction:
\rightarrow compute the continued fraction expansion for $-\frac{p}{q}$:

$$
-\frac{p}{q}=a_{1}-\frac{1}{a_{2}-\frac{1}{\ddots-\frac{1}{a_{n}}}}
$$

where $p>q>0$ and restrict

$$
a_{i} \leq-2 \text { for all } i=1, \ldots, n
$$

Then the 4-manifold M_{4} with $\partial M_{4}=L(p, q)$ has intersection form

$$
K=\left(\begin{array}{ccccc}
a_{1} & 1 & 0 & \cdots & 0 \\
1 & a_{2} & 1 & \cdots & 0 \\
0 & 1 & & \ddots & \vdots \\
\vdots & \ddots & & 0 \\
0 & \cdots & 0 & 1 & a_{n}
\end{array}\right)
$$

Interpretation:
K can be thought of as the linking form on the following link chain

embedded in S^{3}
\rightarrow perform surgery by removing tubular neighborhood $N\left(C_{i}\right) \cong S^{\prime} \times D^{2}$ of each link component and gluing it back after nontrivial diffeomorphism:
$\phi: T^{2} \longrightarrow T^{2}$
$\partial N^{\prime \prime}\left(C_{i}\right)$

